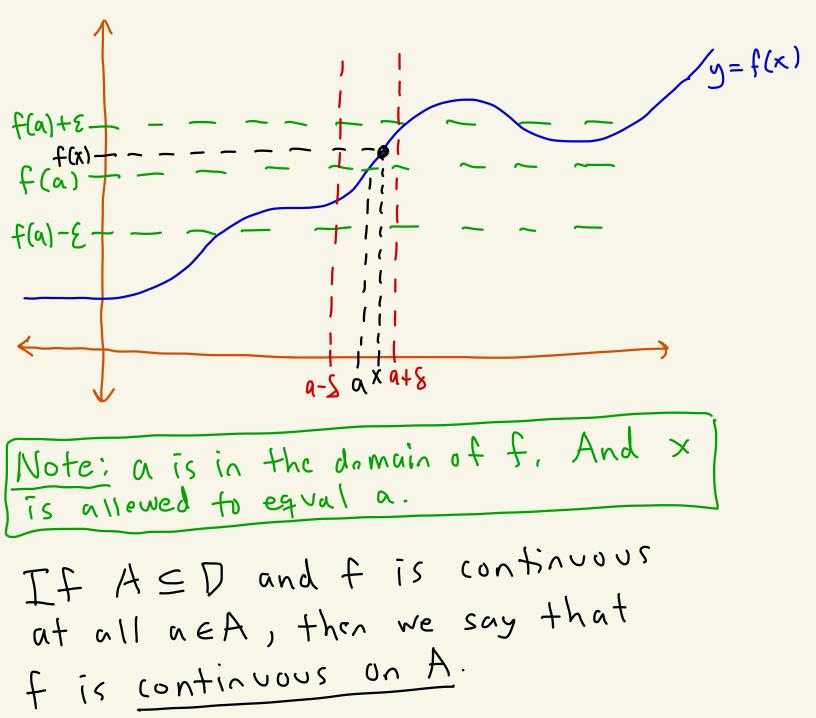
P

<u>Vef</u>: Let $D \subseteq \mathbb{R}$, $\alpha \in \mathbb{R}$, and $f: D \rightarrow \mathbb{R}$. We say that f is continuous at a if for every \$70 there exists 870 so that if xED and IX-al<S then $|f(x) - f(\alpha)| < \varepsilon$.



To get an idea of what the above means
let's have an example in mind as we
go through the two scenarios.
Keep this function in mind for the note below.

$$D = (-\infty, 0] \cup \{24\}$$

 $f: D \rightarrow \mathbb{R}$
 $f(x) = \begin{cases} x^2 & \text{if } x \leq 0 \\ 1 & \text{if } x = 4 \end{cases}$
(b) is in pink

Note: There are two cases for the definition
of continuity of f at a.
case 1: Suppose that a is a limit point of D.
Then we may consider lim
$$f(x)$$
.
Then by def, f is continuous at a if and only if
(i) lim $f(x)$ exists
and (i) lim $f(x) = f(a)$
 $x \ge a$
In our example above $y = f(x)$
this is when $-\infty < a \le 0$

case 2: Suppose a is not a limit point of D.
Then there exists
$$S>0$$
 where
 $(a-S, a+\delta) \cap A = \{a\}$
Then, if $x \in A$ and
 $|x-a| < S$ we have
that $x=a$ and so
 $|f(x) - f(a)| = |f(a) - f(a)|$
 $= 0 < E$
for any $E > 0$.
So, in this case f is
Continuous at $x = a$.
The our example
this happens
when $a = 4$.
 $y=f(x)$
 $y=f(x)$

Ex: Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x)=x^{n}$
Every $a \in \mathbb{R}$ is a limit point of \mathbb{R} .
Thus to show that f is continuous at
 $a \in \mathbb{R}$ we just need to show
that $\lim_{x \to a} x^{2} = a^{2}$.
In topic 3, we showed this for $a=2$.
Let's do this for any $a \in \mathbb{R}$.
Claim: $\lim_{x \to a} x^{2} = a^{2}$
 $Pf:$ Let $\varepsilon = 70$.
Note that
 $|x^{2} - a^{2}| = |x + a| |x - a|$
 $|x^{2} - a^{2}| = |x + a| |x - a|$
 $If S \leq 1$ and $|x - a| < S \leq 1$, then
If $S \leq 1$ and $|x - a| < S \leq 1$, then
 $|x + a| = |x - a + a + a|$
 $|x + a| = |x - a + a + a|$
 $|x + a| = |x - a + a + a|$
 $|x - a| + |2a|$

Let
$$S = \min \{\frac{\varepsilon}{1+2|\alpha|}, 1\}$$
.
Then if $|x-\alpha| < S$, we have
 $|x^2 - \alpha^2| = |x+\alpha| |x-\alpha|$
 $< (1+2|\alpha|) |x-\alpha|$
 $S \le 1$ so
 $|x+\alpha| < 1+2|\alpha|$
 $1 \ge -\alpha| < S$
 $\leq \frac{\varepsilon}{1+2|\alpha|}$
Thus, if $|x-\alpha| < S$, then $|x^2 - \alpha^2| < \varepsilon$.
So, $\lim_{x \to \alpha} x^2 = \alpha^2$

Ex: (Dirichlet's function - 1829)
Let
$$f: \mathbb{R} \rightarrow \mathbb{R}$$
 be defined by
 $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$
Then f is not continuous at any point in \mathbb{R} .
Proof:
Let $a \in \mathbb{R}$ and $\mathcal{E} = \frac{1}{2}$; $I \neq \mathcal{E} \uparrow - \mathfrak{f}(a)$
Let $a \in \mathbb{R}$ and $\mathcal{E} = \frac{1}{2}$; $I \neq \mathcal{E} \uparrow - \mathfrak{f}(a)$
 $Case I:$ Suppose a is rational.
Then, $f(a) = 1$.
Then, $f(a) = 1$.
Then $f(x) - \mathfrak{f}(a) = 10 - 11 = 1 > \mathcal{E}$
making $If(x) - f(a)I = 10 - 11 = 1 > \mathcal{E}$
 $So f$ is not continuous at a .
Case 2: Suppose a is irrational.
Then $f(a) = 0$.
Given any $S > 0$, there
 $exists a$ rational
 $exists a rational$
 $exists a rational
 $exists a rational$
 $exists a rational$
 $exists a rational
 $exists a rational$
 $exists a r$$$

Theorem: Let
$$D \subseteq \mathbb{R}$$
 and $a \in D$.
Let $f: D \Rightarrow \mathbb{R}$ and $g: D \Rightarrow \mathbb{R}$ both
be continuous at a . Let $\alpha \in \mathbb{R}$.
Then, αf , $f+g$, $f-g$, and fg are
continuous at a .
If $g(a) \neq D$, then $\frac{f}{g}$ is continuous at a .

proof:
If a is not a limit point of D, then
all the above functions are continuous at a.
Suppose a is a limit point of D.
For example, since f and g are continuous
for example, since f and g are continuous
at a we know
$$\lim_{x \to a} f(x) = f(a)$$
 and
 $\lim_{x \to a} g(x) = g(a)$.
Thus, $\lim_{x \to a} f(x)g(x) = (\lim_{x \to a} f(x)) [\lim_{x \to a} g(x)] = f(a)g(a)$
Thus, $\lim_{x \to a} f(x)g(x) = (\lim_{x \to a} f(x)) [\lim_{x \to a} g(x)] = f(a)g(a)$
The other proots are similar.

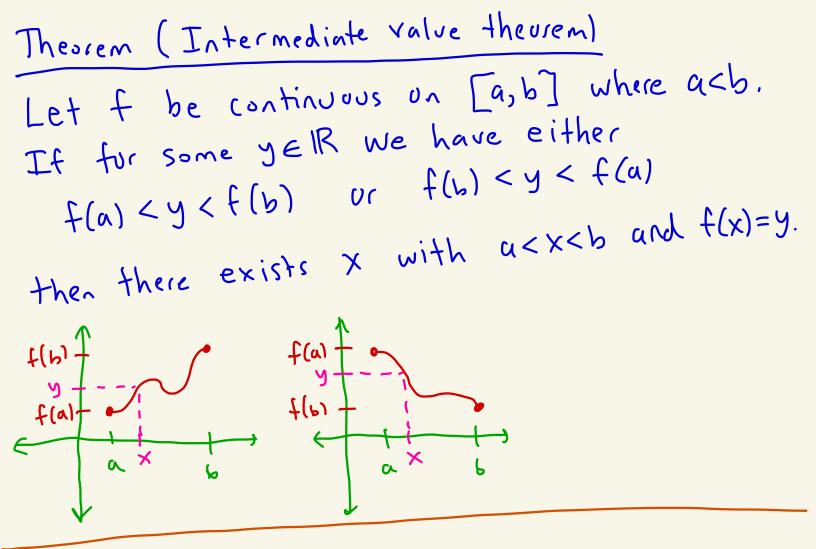
Theorem: Let A,BSR and f:A>IR and g: B > IR be functions such that the range of f is contained in B. If f is continuous at some point a EA and g is continuour at f(a) E B, then gof: A > IR is continuous at a. IR 9(f(a)) conge(F) A $f(\alpha)$ 3 (gof)(a)

Droof:
Let E>O.
Since g is continuous at f(a) there exists
Since g is continuous at f(a) there exists

$$S_1>O$$
 where if yEB and $|y-f(a)| < S_1$
then $|g(y) - g(f(a))| < E$.
then $|g(y) - g(f(a))| < E$.
Since f is continuous at a there exists
Since f is continuous at a there exists
then $|f(x) - f(a)| < S_1$
then $|f(x) - f(a)| < S_1$
Since the range of f is contained in B,

We have that if
$$x \in A$$
 and
 $|x-a| < S$, then $f(x) \in B$ and
 $|f(x) - f(a)| < S$, which will
give $|g(f(x)) - g(f(a))| < E$.
Thus, gof is continuous at a.

Theorem: Let DER and f:D Then f is continuous at a if and only if $\lim_{x \to 0} f(x_n) = f(\alpha)$ for every sequence (x_n) contained in D with Xn-7a. うし proof: HW



We will prove it when f(a) < y < f(b). proof: The other case is similar. Define $E = \{ t \mid a \le t \le b \text{ and } f(t) < y \}$ Note that a E since $\alpha \leq \alpha \leq b$ and $f(\alpha) < y$. f(w) -So, E is not empty. Since E is bounded above by b we know x=sup(E)

exists

From HW 1 We know that if A EB then
int (B)
$$\leq inf(A) \leq svp(A) \leq svp(B)$$
.
Since $E \leq [a,b]$ we know
 $a \leq inf(E) \leq svp(E) \leq b$
Su, $a \leq x \leq b$.
Next we show that $a < x < b$.
Next we show that $y < f(b)$.
We know that $y < f(b)$.
Since f is continuous at b, there
exists $S > 0$ so that if
 $t \in [a,b]$ and $|t-b| < S$,
then $|f(t) - f(b)| < f(b) - y$
 $Positive y < f(b)$
So, if $b - S < t \leq b$, then
 $-(f(b) - y) < f(t) - f(b) < f(b) - y$
That is if $b - S < t \leq b$, then
 $y < f(t) < 2f(b) - y$
So, if $b - S < t \leq b$, then $y < f(t)$

So,

$$(b-s,b] \cap E = \phi$$

Thus,
 $x \le b-S < b$.
So, $x < b$.
A similar computation gives $a < x$.
We know $f(a) < y$
Since f is continuous at a there exists
 $S > 0$ where if $a \le t < a t \le s$, then
 $|f(t) - f(a)| < y - f(a)$.
That is, for $a \le t < a t \le s$,
 $-(y - f(a)) < f(t) - f(a) < y - f(a)$
or
 $-y + 2f(a) < f(t) < y$
So, $[a, a t \le t] \le E$,
Thus since $x = sup(E)$ we
must have $a < x$.

Thus,
$$a < x < b$$
.
Next we will show that $f(x) = y$.
First we show that $f(x) \le y$.
By the inf-sup theorem, since $x = sup(E)$,
for each $n \in \mathbb{N}$ there exists $x_n \in E$
such that $x - \frac{1}{n} < x_n \le x$.
This gives vs a sequence (x_n) contained in E
that converges to x.
For every n, since $x_n \in E$ we know $f(x_n) < y$.
Since f is continuous at x, and x is
a limit point of $E \le [a,b]$, we know
 $\lim_{n \to \infty} f(x_n) = f(x)$.
By Hw Z, since $f(x_n) < y$ for all n
and $\lim_{n \to \infty} f(x_n) = f(x)$ we
know that $f(x) = \lim_{n \to \infty} f(x_n) \le y$.

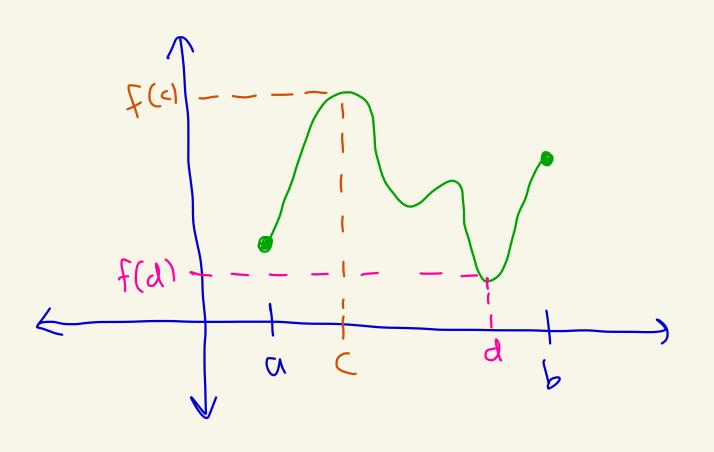
$$S_{0}, f(x) \leq y.$$

Now we rule out the case
$$f(x) < y$$
.
Suppose $f(x) < y$,
Then since f is continuous at x
there exists $S > 0$ where if
there exists $S > 0$ where if
 $t \in [a,b]$ and $|t-x| < \delta$, then
 $|f(t) - f(x)| < \frac{y - f(x)}{Positive}$
since $f(x) < y$
In the above we can assume
that $\delta < b - x$ by shrinking it if
that $\delta < b - x$ by shrinking it needed.
Thus, if $x - \delta < t < x + \delta \leq b$
then $-(y - f(x)) < f(t) - f(x) < y - f(x)$
So if $x - \delta < t < x + \delta$
then $-(y - f(x)) < f(t) - f(x) < y - f(x)$

But then

$$(x-s,x+s) \subseteq E$$
 y
So for example
 $x+\frac{s}{2} \in E$ $x+\frac{s}{2} \in E$
This contradicts
the fact that $x=sup(E)$.
Hence $f(x) < y$ is impossible
Hence $f(x) = y$.

Theorem: Let
$$f$$
 be continuous
on [a,b] with af attains it's maximum
and minimum values on [a,b].
and minimum values on [a,b].
That is, there exists $c \in [a,b]$
That is, there exists $c \in [a,b]$
where $f(c) \ge f(x)$ for all as $x \le b$
where $f(c) \le f(x)$ for all as $x \le b$
is there exists $d \in [a,b]$



proof: We will prove that f attains its maximum. For the minimum, repeat the proof with -f in place of f.
Consider $S = \{f(x) \mid a \le x \le b\}$ Let's show that S is bounded

from above. Suppose that it is not. Then for each $n \in IN$ there exists $X_n \in [a,b]$ with $f(x_n) > n$.

Since a < Xn < b for each n we get that (Xn) is a bounded sequence.

By Bolzano-Weierstrass there is a convergent subsequence

Xn, Xn2, Xn3, Xn4) 000

with
$$n_1 < n_2 < n_3 < n_4 < \cdots$$

Suppose $\lim_{n_k \to \infty} x_{n_k} = C$.
Since $a \le x_{n_k} \le b$ for all $n_{k,j}$
by HW Z we get $a \le c \le b$.
Since f is continuous at c
We get $f(c) = \lim_{x \to c} f(x)$
 $= \lim_{x \to c} f(x_{n_k})$
HW 4
its essentially
the function sequence
 $\lim_{x \to \infty} f(x_{n_k}) \ge n_k$ for all k
and $n_k \to \infty$.
So, $\lim_{x \to \infty} f(x_{n_k})$ dues not exist.

Therefore we must have that
S is bounded from above.
So,
$$M = sup(S)$$
 exists.
By the inf-sup theorem,
for each mEIN there exists
 y_n with $a \le y_m \le b$ and
 $M - \frac{1}{m} < f(y_m) \le M$.
Thus, $\lim_{m \to \infty} f(y_m) = M$. 4 Let ≥ 70 .
 $p_{ick} \ge 30$.
Thus, $\lim_{m \to \infty} f(y_m) = M$. 4 Let ≥ 70 .
 $p_{ick} \ge 30$.
Thus, $\lim_{m \to \infty} f(y_m) = M$. 4 Let ≥ 70 .
 $p_{ick} \ge 30$.
Since (y_m) is a bounded
Since (y_m) is a bounded
 $if m \ge N$, then
 $if m \ge N$, then
 $if M \ge N$, then
 $if M \ge N$.
Suppose $y_{m_k} \to d$.
Since $a \le y_{m_k} \le b$ for all m_k we
know by $H \ge 2$ that $a \le d \le b$.
Thus, by the continuity of f

$$f(d) = \lim_{M \to \infty} f(y_{MQ}) = M.$$

$$f(d) = \lim_{M \to \infty} f(y_{MQ}) = M.$$

$$HW 2$$

$$F(d) = M = \sup(s) \quad We \quad Know$$

$$f(d) = M = \sup(s) \quad We \quad Know$$

$$f(d) = f(x) \quad \text{for all } a \le x \le b.$$

$$So \quad f \quad attains \quad \text{itr } maximum$$

$$on \quad [a,b] \quad at \quad d.$$